
Presentation to the Environmental Planning Subcommittee

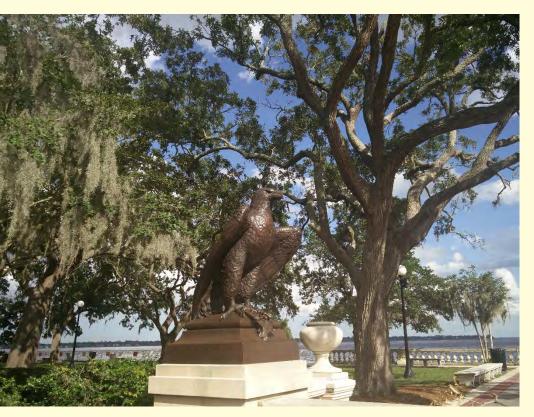
Restoring and Preserving Urban Tree Canopy for Stormwater Management

By Karen Firehock, Executive Director, Green Infrastructure Center Inc. August 27, 2020

ireen Infrastructure Cent

The Green Infrastructure Center (GIC) is the technical services provider and we wrote the proposal to fund the project with the Florida Forest Service.

The GIC) is a nonprofit organization that helps communities evaluate green assets and manage them to maximize ecology, economy and culture.


We do this by:

Building landscape models Teaching courses and workshops Researching new methodologies Helping communities create strategies

www.gicinc.org

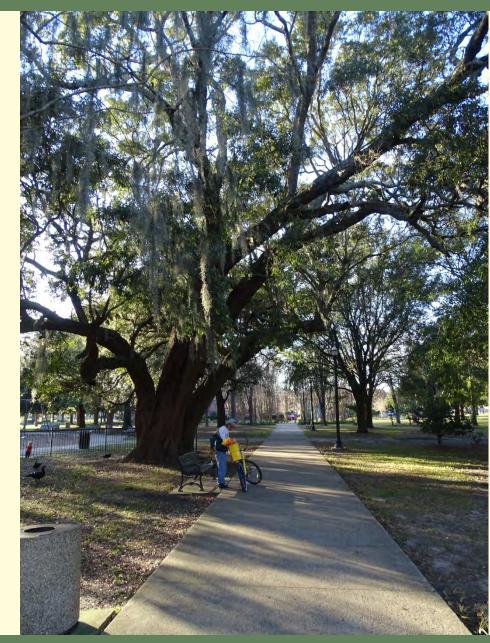
Slide Show Topics

- Project Overview
- Trees as Green
 Stormwater
 Infrastructure
- Data How are we doing?
- Codes What did we find?

Q&A

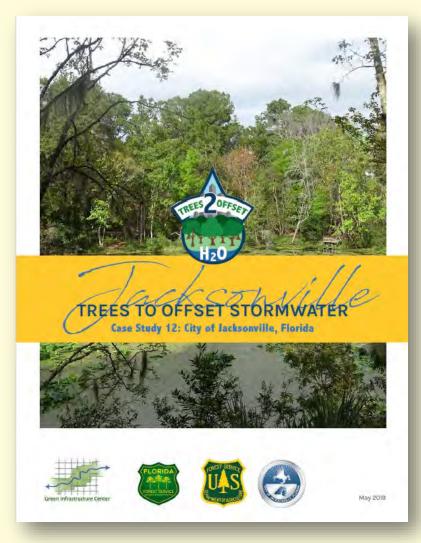
Tree Canopy Project: Trees to manage stormwater and other benefits too!

GIC partnered with forestry agencies in 6 states to obtain funds from USDA Forest Service Southern Regionto show how to utilize trees for stormwater management.

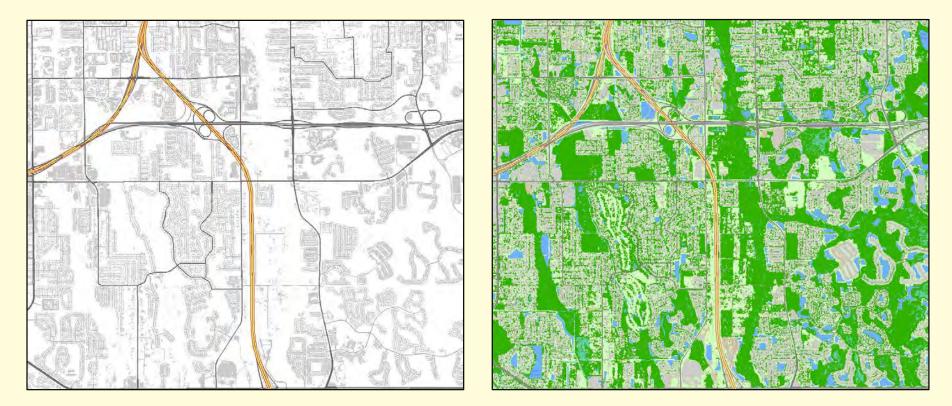

6 southern states: VA, NC, SC, GA, FL, AL FL: Jacksonville, Orange Coutny, Miami Beach

Project Goals

This project was initiated to help Jacksonville map, evaluate, protect and restore its urban forests for improved stormwater management and clean water.


Urban forests are a vital tool in managing and reducing runoff.

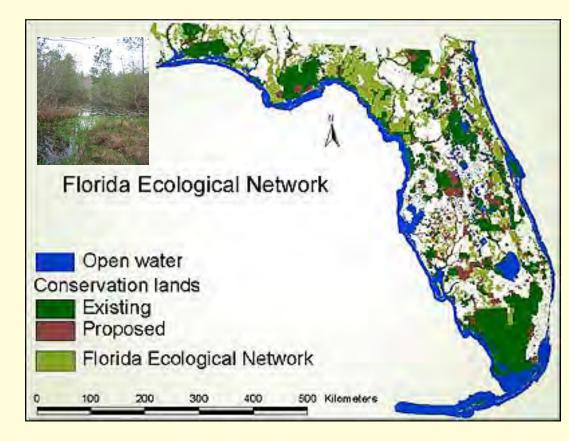
Project Outcomes


- ✓ Map of the city's urban forest and possible planting areas.
- Method for linking urban forest systems to urban stormwater management.
- Calculating stormwater uptake by trees
- Recommendations for how the city can adopt new programs, codes, processes to better integrate the city's trees as part of stormwater management
- Sharing the work a case booklet and presentation detailing methodology, lessons learned, best practices on line now!

http://www.gicinc.org/trees_stormwater.htm

What is green infrastructure?

Left shows the gray infrastructure including buildings and roads (left). Classified high-resolution satellite imagery (right) adds a green infrastructure data layer (trees and other vegetation).

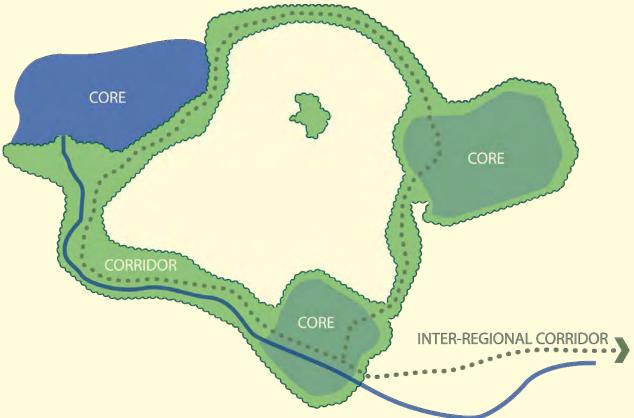


Term Origin ...

Florida coined the term "Green Infrastructure." in a 1994 report to the governor by the Florida Greenways Commission.

It was intended to show that natural systems are important components of our "infrastructure."

Univ. of Florida built a model to show key assets.



"The Commission's vision for Florida represents a new way of looking at conservation, an approach that emphasizes the interconnectedness of both our natural systems and our common goals and recognizes that the state's 'green infrastructure' is just as important to conserve and manage as our built infrastructure."

Green Infrastructure Planning Requires Thinking About How to Connect the Landscape

Not just key habitat patches but how we connect them!

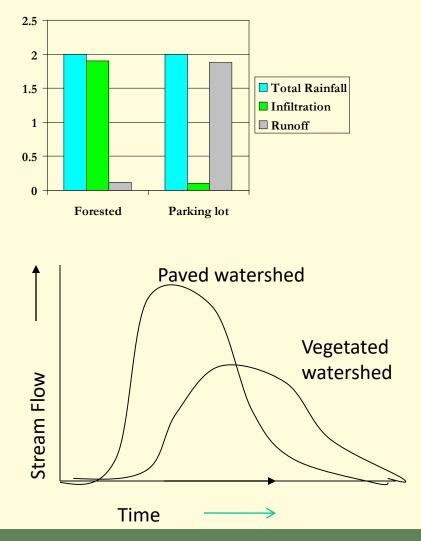
The problem of developments that protect green space without thinking about connections beyond parcel boundaries ...

Trees: the original – and best – green infrastructure!

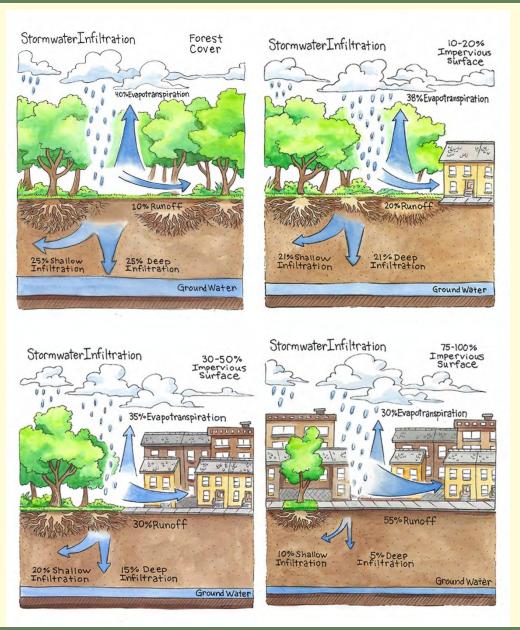
Trees give us cleaner air, shade, beauty and stormwater benefits at a cost that is far cheaper than engineered systems!

Estimates for the amount of water a typical tree can intercept in its crown, range from 760 gallons to 4000 gallons per tree per year, depending on species.

GREEN INFRASTRUCTURE CENTER INC.



Impacts from Lack of Trees and Too Much Impervious Surface...


- 1. Impervious surfaces prevent rain infiltration, causing greater runoff volume and velocity.
- 2. Storm flows peak sooner in the stream at higher volumes.
- 3. Higher volumes and velocities of runoff lead to more flooding and damages the firehose effect!

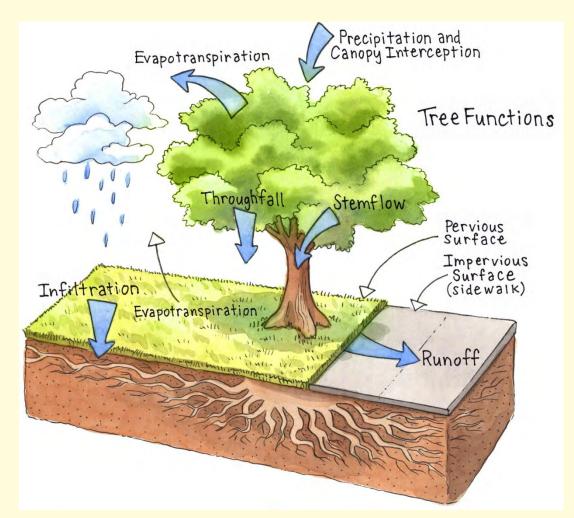
As land cover changes, so does stormwater infiltration

• • •

Water flow strategies

How do we make this...

function like this?



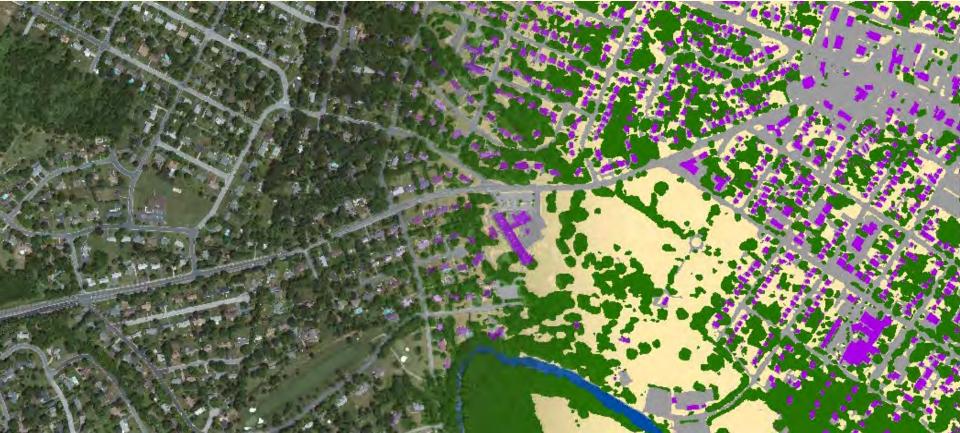
Urban Tree Canopy

20% of annual rainfall or > retained in crown (Xiao et al., 2000)

Delays runoff up to 3.7 hours

infiltration capacity of soils

Tree canopy effectiveness is ...


- Highest during short, low intensity storms
- Lower as rainfall amount and intensity increases

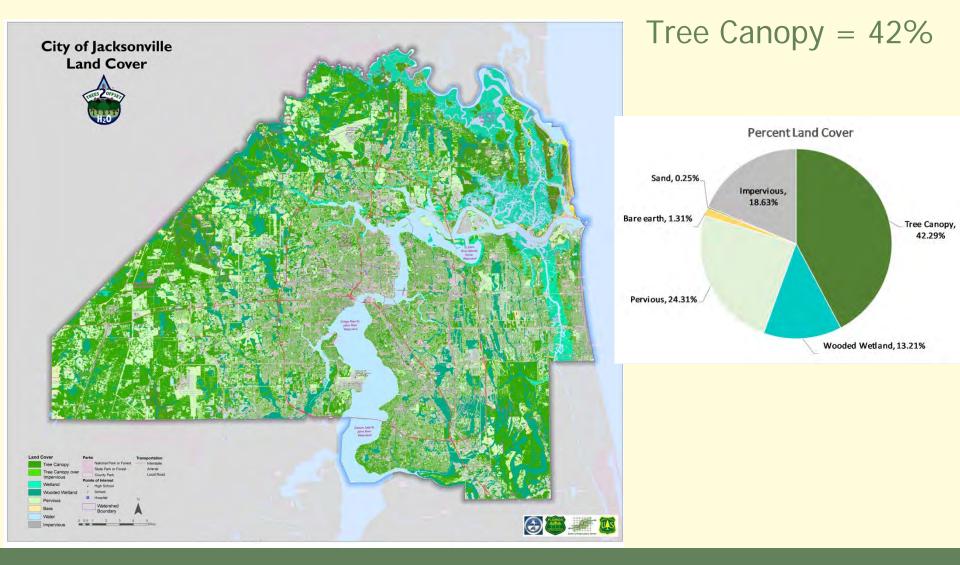
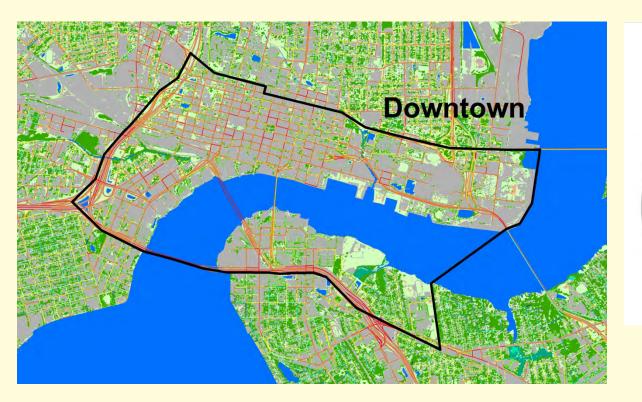
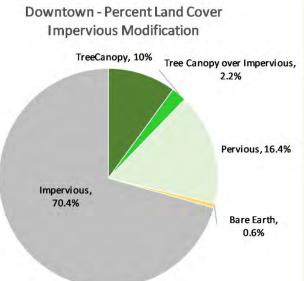
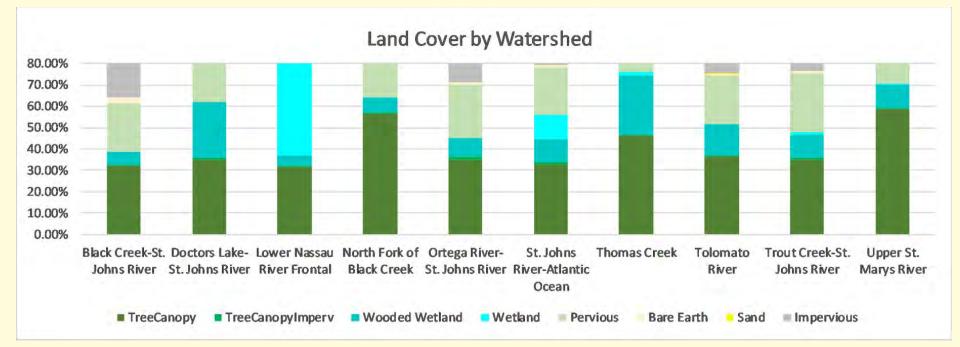

Measuring The Trees – Using Image Classification

Image classification is the process of breaking an image into discrete 'classes', with one of the most common applications being to identify land use classes (urban, agriculture, forest, etc.)




Results! How well canopied is Jacksonville?


But ...an area downtown area is only 12.2%, so it varies a lot!

Land cover by Watershed

Calculating Stormwater Uptake by Trees – It's complicated!

Tree Over Parking Lot

Tree Over Natural Forest Cover

Tree Over Lawn

Tree Over Street

Forestry Work Group Study

Tree canopy works to reduce the proportion of precipitation that becomes stream and surface flow, also known as *water yield*.

The Hynicka and Divers study (1996) modified the water yield equation of the SCS model by adding a canopy interception term (C_i), resulting in:

$$R = \frac{(P - C_i - I_a)^2}{(P - C_i - I_a) + S}$$

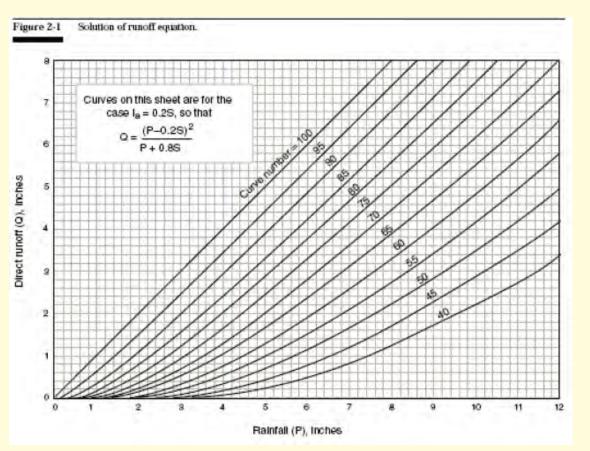
Recommendations of the Expert Panel to Define BMP Effectiveness for Urban Tree Canopy Expansion

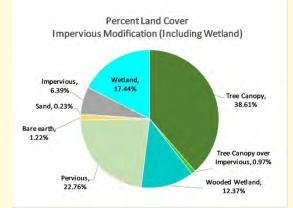
Karen Cappiella, Sally Claggett, Keith Cline, Susan Day, Michael Galvin, Peter MacDonagh, Jessica Sanders, Thomas Whitlow, Qingfu Xiao

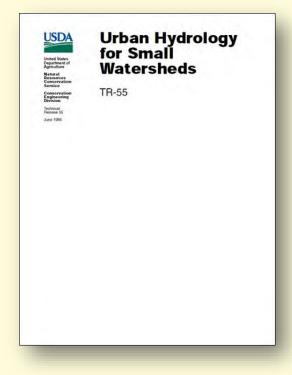
Accepted conditionally by Forestry Work Group, June 23, 2016 Approved by Watershed Technical Work Group, DATE TBD Final Approval by Water Quality Goal Implementation Team, DATE TBD

Prepared by Neely L. Law, PhD, Center for Watershed Protection, Expert Panel Chair Jeremy Hanson, Virginia Tech, Expert Panel Coordinator

Where R is runoff


P is precipitation


I_a is the initial abstraction,


S is the potential maximum retention after runoff begins for the subject land cover. (S = 1000/CN - 10)

Different land cover types result in different rates of runoff

The NRCS Runoff Curve Number (CN)

- A coefficient used to estimate runoff from precipitation, accounting for losses due to canopy interception, surface storage, evaporation, transpiration and infiltration.
- Curve numbers have been developed for a variety of land covers and soil conditions.
- ✓ Most engineers, public works staff understand how to apply this approach.

Curve numbers for trees in different conditions.

Stormwater Runoff Yield Estimation

The landcover map was combined with a map of hydrologic soil groups (source: NRCS SSURGO) to calculate areas of landcover within each soil hydrolgic group. The area counts were used to compute composite curve numbers for each drainage basin and landcover combination. The table below provided the curve numbers used for each landcover/soil group combination.

		Α	A/D	В	B/D	C	C/D	D
1	Trees over pervious	37	78	59	78	72	78	78
2	Trees over Impervious	96	96	96	96	96	96	96
3	Pervious	39	80	61	80	74	80	80
4	Water	100	100	100	100	100	100	100
5	Impervious	98	98	98	98	98	98	98
6	Bare Earth	77	94	86	94	91	94	94
7	Forested open space	30	77	55	77	70	77	77
8	Forested wetland	77	77	77	77	77	77	77
9	Wetlands	100	100	100	100	100	100	100
10	Sand	77	94	86	94	91	94	94

Curve Numbers from TR-55

Rainfall Interception

Benefits are typically modeled on a tree-by-tree basis. We need to be able to apply benefits on a per unit area basis...

We need to analyze trees based on the conditions of the setting and soils by watershed (HUC10).

The GIC stormwater calculator models the benefit of maintaining or increasing urban canopy.

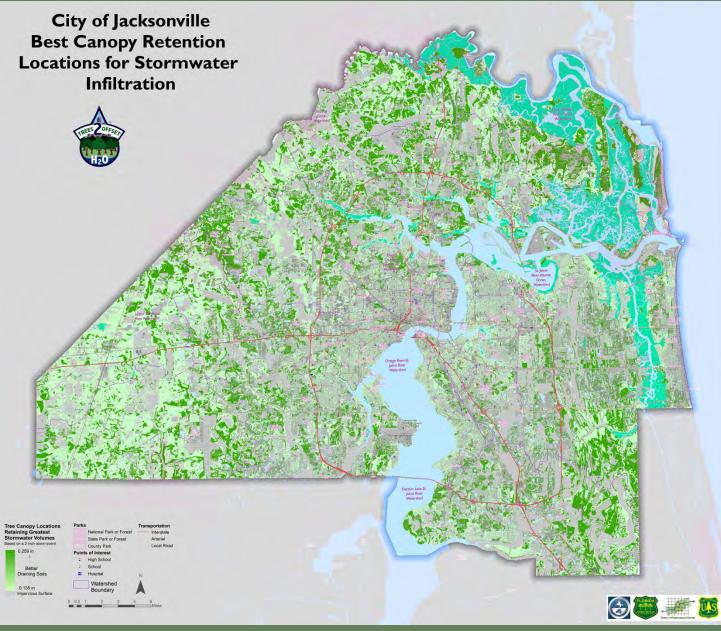
1 1	ACKSONVILLE INTL AP		Urban Tree	Canopy Storn	nwater Mode	1		versio	August 14, 3	2020					
2 3 4 5 6 7	SHEES ZOFFSET	methodolog	nfrastructur ıy is based u	e Urban Tree C	Canopy Storm TR-55 method	water Model e		mwater runoff yie s. It is used to pro	elds for current	t and potentia					
8	H120			r	million gallons										
9	TOTALS	55.4%	15.4%	1,859.1		· ·	55.4%	11							
10		Statistics by Draina	e Basin (cur	rent settings)					Varia	able					Variable
11	Area	Current Tree Cover Cover		Tree H20 Capture	Increased H2O w/xx% tree loss	Added H2O Capture w/xx% PCA	Adjusted Tree Cover from loss and gain scenarios	Pick an Event Pick a loss scenario			Converted Land			Canopy Added	Enter % canopy to add
12			6	r,	nillion gallons		%	Event	% UTC loss	% FOS Loss	% Imperv	Max TC Possible	Maximum Potential Added Canopy Area	% Canopy Added	% of PCA achieved
13	1 Black Creek-St. Johns River	38.8%	35.7%	3.8	-	-	39%	1 yr / 24 hour	▼ 0%	0%	0%	46.3%	7.5%	0.0%	0%
14	2 Doctors Lake-St. Johns River	61.7%	18.1%	223.1	-	-	62%	1 yr / 24 hour	0%	0%	0%	68.1%	6.4%	0.0%	0%
15	3 Lower Nassau River Frontal	70.0%	5.4%	85.8			70%	1 yr / 24 hour	0%	0%	0%	77.5%	7.5%	0.0%	0%
16	4 North Fork of Black Creek	64.2%	6.3%	213.9	-	~	64%	1 yr / 24 hour	0%	0%	0%	70.5%	6.3%	0.0%	0%
17	5 Ortega River-St. Johns River	45.0%	28.9%	253.9		-	45%	1 yr / 24 hour	0%	0%	0%	54.9%	9.8%	0.0%	0%
18	6 St. Johns River-Atlantic Ocean	50.5%	23.2%	408.1	-	-	50%	1 yr / 24 hour	0%	0%	0%	58.7%	8.2%	0.0%	0%
19	7 Thomas Creek	75.4%	3.5%	216.3	-		75%	1 yr / 24 hour	0%	0%	0%	79.7%	4.2%	0.0%	0%
20	8 Tolomato River	51.4%	24.6%	1.8	-	~	51%	1 yr / 24 hour	0%	0%	0%	56.0%	4.6%	0.0%	0%
21	9 Trout Creek-St. Johns River	47.3%	24.0%	268.4		-	47%	1 yr / 24 hour	0%	0%	0%	57.7%	10.4%	0.0%	0%
22	10 Upper St. Marys River	68.5%	4.6%	183.9	8	-	69%	1 yr / 24 hour	0%	0%	0%	79.2%	10.7%	0.0%	0%

- Build the use of the tool into the development process.
- Understand which landscapes and parcels take up the more stormwater. Protect those parcels.

Changing the event storm (rainfall vol.) changes the amount of water captured. Can also model adding more trees (PCA = possible canopy area).

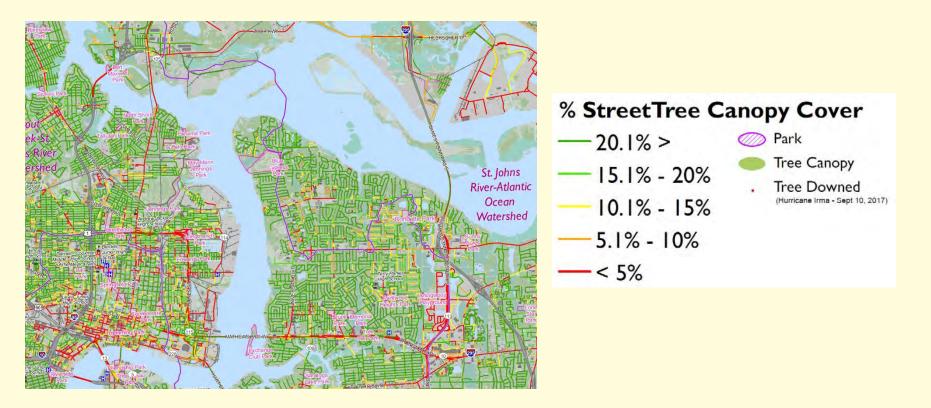
1 J.	ACKSONVILLE INTL AP		Urban Tree	Canopy Stor	mwater Mode	1)		version	August 14, 2						
2 3 4 5 6 7	THEES 2 OFFISED	The Green Infrastructure Urban Tree Canopy Stormwater Model estimates stormwater runoff yields for current and potential land cover. The methodology is based upon the NRCS TR-55 method for small urban watersheds. It is used to provide better estimates using GIC's high-resolution land cover and modeling of potential canopy area.											ructure Center		
8	HIZU	-			million gallons										
8 9	TOTALS	55.4%	15.4%	2,195.3	1.4. 2.4.5	46.4	57.5%	$\boldsymbol{\mathcal{V}}$							
10		Statistics by	y Drainage Ba	sin (current se	attings)			18	Varia	able					Variable
11	Area	Current Tree Cover		Current pervious Cover Capture Increased H2O w/xx9 tree loss		Added H2O Capture w/xx% PCA	Adjusted Tree Cover from loss and gain scenarios	Pick an Event	Pick a los	s scenario	Converted Land			Canopy Added	Enter % canopy to add
12		ş	%		million gallons		%	Event	% UTC loss	% FOS Loss	% Imperv	Max TC Possible	Maximum Potential Added Canopy Area	% Canopy Added	% of PCA achieved
13	1 Black Creek-St. Johns River	38.8%	35.7%	4.5	*	0.18	43%	2 yr / 24 hour	0%	0%	0%	46.3%	7.5%	3.8%	50%
14	2 Doctors Lake-St. Johns River	61.7%	18.1%	264.5	141	1.56	62%	2 yr / 24 hour	0%	0%	0%	68.1%	6.4%	0.6%	10%
15	3 Lower Nassau River Frontal	70.0%	5,4%	99.6	-	0.31	70%	2 yr / 24 hour	0%	0%	0%	77.5%	7.5%	0.4%	5%
16	4 North Fork of Black Creek	64.2%	6,3%	262.5	1.71	1.58	65%	2 yr / 24 hour	0%	0%	0%	70.5%	6.3%	0.6%	10%
17	5 Ortega River-St. Johns River	45.0%	28.9%	301.7	-	19.81	50%	2 yr / 24 hour	0%	0%	0%	54.9%	9.8%	4.9%	50%
18	6 St. Johns River-Atlantic Ocean	50.5%	23.2%	472.8	-	12.88	53%	2 yr / 24 hour	0%	0%	0%	58.7%	8.2%	2.5%	30%
19	7 Thomas Creek	75.4%	3.5%	251.9	+	3.84	78%	2 yr / 24 hour	0%	0%	0%	79.7%	4.2%	2.1%	50%
20	8 Tolomato River	51.4%	24.6%	2.1		0.00	52%	2 yr / 24 hour	0%	0%	0%	56.0%	4.6%	0.1%	3%
21	9 Trout Creek-St. Johns River	47.3%	24.0%	310.8	-	4.50	48%	2 yr / 24 hour	0%	0%	0%	57.7%	10.4%	1.0%	10%
22	10 Upper St. Marys River	68.5%	4.6%	225.1	-	1.68	70%	2 yr / 24 hour	0%	0%	0%	79.2%	10.7%	1.1%	10%

Can also model runoff from the loss of trees... how much more water runs off!


1	A B	С	D	E	F	G	н	1 I	J	К	L	М	N	0	P
1 J/	ACKSONVILLE INTL AP		Urban Tree	Canopy Storn	nwater Mode			version	n August 14, 2	2020		-			
2 3 4 5 6 7	TREES 2 OFFISER	methodolog	gy is based up		TR-55 method			mwater runoff yie s. It is used to pro					Green Infrastr	ucture Center	
8	H2U			1	million galions										
9	TOTALS	55.4%	15.4%	2,195.3	15.9		49.0%	1.1							
10		Statistics by	y Drainage Ba	sin (current se	ettings)	1			Varia	able	-				Variable
11	Area	Current Tree Cover		Capture H2O w/xx% Capture		Added H2O Capture w/xx% PCA	Adjusted Tree Cover from loss and gain scenarios	Pick an Event			Canopy Added	Enter % canopy to add			
12							%	Event	% UTC loss	% FOS Loss	% Imperv	Max TC Possible	Maximum Potential Added Canopy Area	% Canopy Added	% of PCA achieved
13	1 Black Creek-St. Johns River	38.8%	35.7%	4.5	.0.08	~	29%	2 yr / 24 hour	10%	0%	0%	46.3%	7.5%	0.0%	0%
14	2 Doctors Lake-St. Johns River	61.7%	18.1%	264.5	1.37	-	57%	2 yr / 24 hour	5%	0%	0%	68.1%	6.4%	0.0%	0%
15	3 Lower Nassau River Frontal	70.0%	5.4%	99.6	0.36	-	62%	2 yr / 24 hour	8%	0%	0%	77.5%	7.5%	0.0%	0%
16	4 North Fork of Black Creek	64.2%	6.3%	262.5	3.23	-	44%	2 yr / 24 hour	20%	0%	0%	70.5%	6.3%	0.0%	0%
17	5 Ortega River-St. Johns River	45.0%	28.9%	301.7	3.83	-	40%	2 yr / 24 hour	5%	0%	0%	54.9%	9.8%	0.0%	0%
18	6 St. Johns River-Atlantic Ocean	50.5%	23.2%	472.8	3.44	+	45%	2 yr / 24 hour	5%	0%	0%	58.7%	8.2%	0.0%	0%
19	7 Thomas Creek	75.4%	3.5%	251.9	0.22	(24)	70%	2 yr / 24 hour	5%	0%	0%	79.7%	4.2%	0.0%	0%
20	8 Tolomato River	51.4%	24.6%	2.1	0.01	-	46%	2 yr / 24 hour	5%	0%	0%	56.0%	4.6%	0.0%	0%
21	9 Trout Creek-St. Johns River	47.3%	24.0%	310.8	3.31	-	42%	2 yr / 24 hour	5%	0%	0%	57.7%	10.4%	0.0%	0%
22	10 Upper St. Marys River	68.5%	4.6%	225.1	0.01	-	64%	2 yr / 24 hour	5%	0%	0%	79.2%	10.7%	0.0%	0%

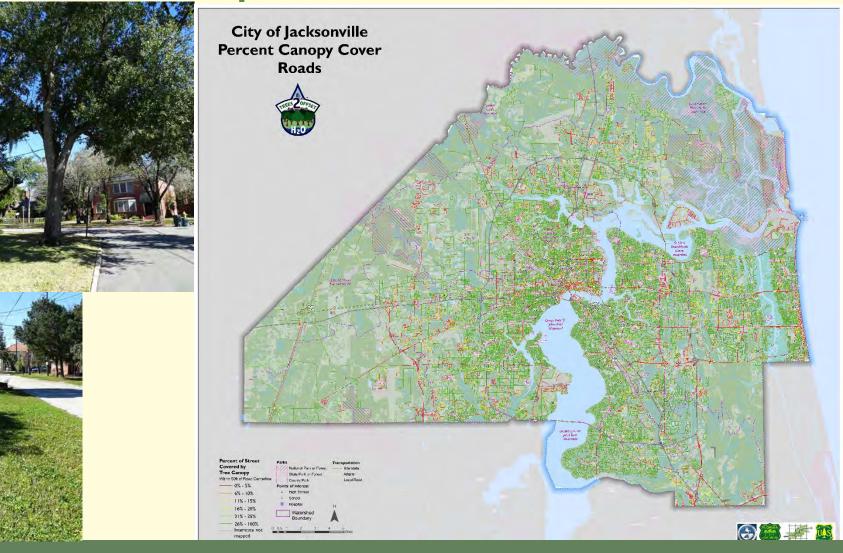
Can model land pollution uptake or runoff for nitrogen, phosphorus and sediment. This shows the water quality impacts for adding or losing trees!

	version	August 14, 2	2020																				
stimates stormwater runoff yields for current and potential land cover. The In watersheds. It is used to provide better estimates using GIC's high-resolution							cture Center																
55.9%		Varia	able					Variable	1936209	32	158072	39 Stat	99386	27	-7874	0	-630	0	-747	0			
Adjusted Tree Cover from loss and gain scenarios	Pick an Event		s scenario	Converted Land			Canopy Added	Enter % canopy to add	Statistics by Drainage Non-Point Pollution Captured by Existing Trees (% = percent of total load without trees)						Chan	Change in Pollution Load from Landuse Variables (% = percent increase or decrease of total load)							
%	Event	% UTC loss	% FOS Loss	% Imperv	Max TC Possible	Maximum Potential Added Canopy Area	% Canopy Added	% of PCA achieved	N lbs/yr	N (%)	P lbs/yr	P (%)	SED t/yr	SED (%)	N lbs/yr	N (%)	P lbs/yr	P (%)	SED t/yr	SED (%)			
39%	2 yr / 24 hour	0%	0%	0%	46.3%	7.5%	0.4%	5%	2,589	15	210	21	167	12	-16	0	-1	0	-2	0			
	2 yr / 24 hour	0%	0%	0%	68.1%	6.4 %	0.1%	2%	235,037	37	19,196	46	11,831	31	-275	0	-22	0	-25	0			
	2 yr / 24 hour	0%	0%	0%	77.5%	7.5%	0.0%	0%	100,084	45	8,196	52	4,594	31	0	0	0	0	0	0			
	2 yr / 24 hour	0%	0%	0%	70.5%	6.3%	0.0%	0%	242,011	46	19,817	51	11,144	35	0	0	0	0	0	0			
	2 yr / 24 hour 2 yr / 24 hour	0%	0% 0%	<u> </u>	54.9% 58.7%	9.8% 8.2%	0.0%	0% 20%	238,953 402,857	20 26	19,387 32,839	27 34	15,089	20 23	0	0 -1	0 -607	0 -1	0 -720	0 -1			
	2 yr / 24 hour 2 yr / 24 hour	0%	0%	0%	79.7%	4.2%	0.0%	0%	231,107	58	18,944	54 63	21,830 10,055	23 43	-7,583 0	-1	-607	-1	-720	-1			
	2 yr / 24 hour	0%	0%	0%	56.0%	4.6%	0.0%	0%	2,629	28	215	37	138	26	0	0	0	0	0	0			
	2 yr / 24 hour	0%	0%	0%	57.7%	10.4%	0.0%	0%	264,295	23	21,501	30	15,394	22	0	0	0	0	0	0			
69%	2 yr / 24 hour	0%	0%	0%	79.2%	10.7%	0.0%	0%	216,647	54	17,767	59	9,144	33	0	0	0	0	0	0			



Optimal places for canopy retention.

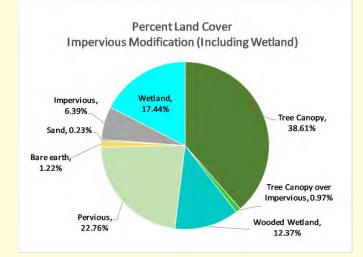
The darker green are areas where trees take up more water.

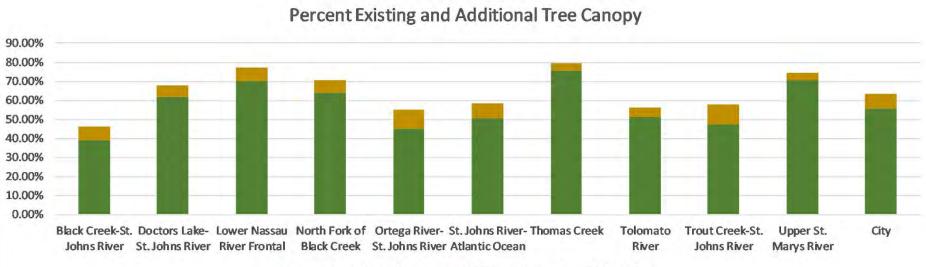


Street by street analysis. How green are the city's streets with canopy?

Here is the street by street map!

Where Can We Fit Trees? Possible Planting Areas




Possible Planting Area vs. Potential Tree Canopy

Planting area available by watershed

Current Perecnt Tree Cover Additional Percent Possible Tree Cover

	Large Tree	• Total benefits/year	=	\$55
		 Total costs/year 	=	S18
		• Net benefits/year	=	\$37
		Life expectancy	=	120 years
		Lifetime benefits	=	\$6,600
		Lifetime costs	=	\$2,160
		Value to community	=	S4,440
Jan		1.1.1		
	Medium Tree	• Total benefits/year	=	\$33
2. 2. 30		• Total costs/year	=	\$17
and the		• Net benefits/year	=	S16
		Life expectancy	=	60 years
ALC: N		Lifetime benefits	-	A1 000
100		Lifetime costs	=	\$1,020
	1.12	Value to community	-	\$960
1000		a share and		and the second
	Small Tree	• Total benefits/year	=	S23
		• Total costs/year	-	S14
1.188	100 200	• Net benefits/year	-	59
Store		Life expectancy	-	30 years
A MA		Lifetime benefits	-	\$690
LLC.		Lifetime costs	=	\$420
ALC: NO DESCRIPTION		Value to community	=	\$270
	- TE	tore to community	-	

Annual Average Benefits

Using GIS, we can estimate where it's possible to plant trees, and the benefits of doing so.

Palm trees have low benefits and high costs. Palm Benefits/Costs: Ex. Sabal Palm

Factor	Dollar Value			
Total benefits/year	\$4			
Total costs/year	\$30			

Palms have the highest nutritional requirements of any plant grown in the state of Florida (Broschat 2010a).

All potential planting areas are not created equal. Optimal Tree Planting Locations

If planting for stormwater, choose these locations.

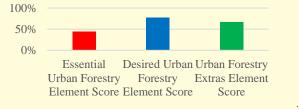
Next question: What policies and practices are needed?

Codes and Policy Audit answers two questions:

Do city policies allow too much impervious area?

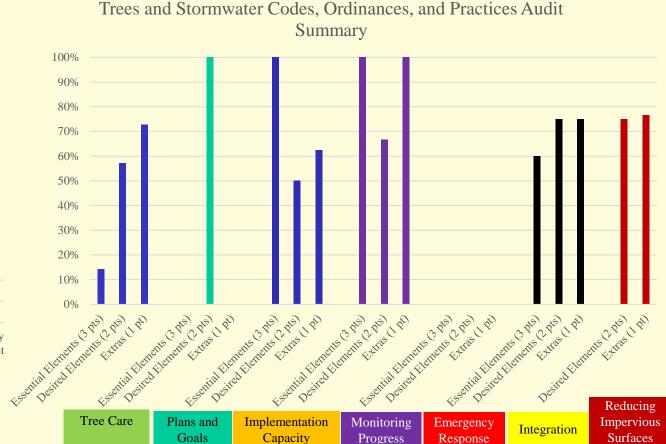
For example does the city mandate excessive parking area? Does it provide incentives to reduce impervious area?

Can the city manage and expand the urban forest? For example, are tree care and management well funded and implemented? Does the city have a strategy for planting trees in areas most in need?


Policy: What proposed code changes did the team develop?

This is a summary only. A longer report was provided to the city in 2019.

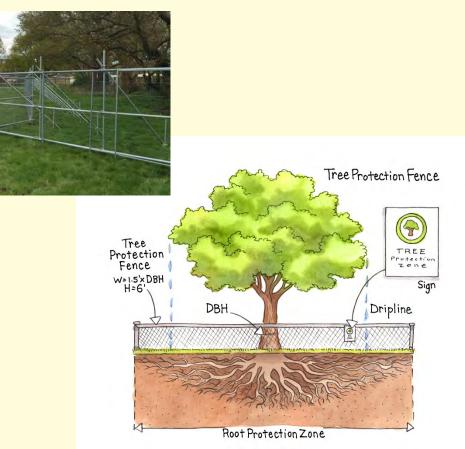
How did the city score?


Score Breakdown by Urban Forestry and Stormwater Element Priority

The city has an excellent urban forestry program!

https://www.coj.net/trees

But there is always more that can be done!


A spreadsheet is used to track each city's codes and forest management

	N an forestry principles in other local government codes and ordinant sustaining and managing an urban forest canopy. Integration can inc Feature		irements in stormwater cod			What to Look For	Score	Potential Sco
Stormwa	ater Management		and the second second					Y-
Isi	the municipality subject to the MS4 permit program?	Yes				"Not a scoring item"	NHA:	NI/A:
ste	oes the stormwater division have an itemized program of ormwater infrastructure maintenance? Does it include planting ees to soak up more stormwater?	iNo				Identify where maintenance or new construction is required to ensure proper function of the municipal stormwater system. Also enumerate the cost of maintenance and construction. Factor new tree planting costs into the stormwater management improvement plan. Municipalities where definitive stormwater management improvement programs include tree plantings score one point. Municipalities where stormwater management		I
De	ces the municipality have a SWM utility fee? If so, are trees ovided as credits to minimize the fee?	Yes		Trees are not specifically provided as a way to reduce the fee. Some constructed BMPs that can reduce the fee are porous pavement, constructed wetlands, and stormwater ponds.	http://www.coj.net/departments/cityf ees/docs/ac-manual-2011-final.aspx	Develop a SVM utility fee which funds the cost of stormwater maintenance and tree plantings (see above). Allow for a reduction of the fee by reducing impervious surfaces (and decreasing stormwater runoff) onsite. Advertise the program and provide technical assistance. Municipalities with an effective SVM utility fee and fee reduction program which includes trees score two points. Municipalities with an effective SV/M utility fee but with no way to reduce the fee using trees score one point. Municipalities with no	Ŷ	2
	stormwater required to be treated for quality before it is scharged?			(Don't see this as a requirement)		Require treatment of stormwater for quality before discharge. Municipalities who do so score one point.		4
ine bie we	re there effective design priteria for stormwater BMPs which olude green roofs (that may or may not be able to support trees), oswales, rain gardens, forested swales, Filterra boxes, constructed etlands, permeable pavers, permeable aspkalt etc. Do they roourage plant material?			(SW BMP Handbook referenced in the stormwater reduction fee manual does not actually link to the BMP Manual p. 15 of manual). Found a state stormwater design manual (in Jacksonville Litrarul Le Matumbat is being	http://www.coj.net/departments/cityf ees/doos/ac-manual-2011-final.aspx	Develop design criteria for as many known Best Management Practices as possible. Smaller municipalities may depend on state or county stormwater management manuals which often do not include a completer range of BMPs. If this is the case, develop an addendum to the state/county manual which covers the entire spectrum of BMPs. Municipalities with a stormwater management manual including 20 or more		2

During construction require tree protection fencing placement that best ensures tree survival.

 Current COJ codes required tree protection fence placement only 6' from the base of any tree.

 Tree protection best practices recommend tree protection fence placement at a distance of 1.5' per DBH inch from the trunk of three.

During construction require sturdy tree protection fencing.

- Current COJ codes require plastic tree protection fencing three feet high.
- Tree protection best practices recommend 6' sturdy metal fencing to adequately protect trees in high risk construction settings or trees of special significance (e.g. historic trees).

Require at least 1,000 cubic feet of soil volume for new tree plantings.

• Urban trees typically only live for seven years.

 Increase tree survivability by providing adequate soil volume and drainage.

Conduct a land cover assessment every four years.

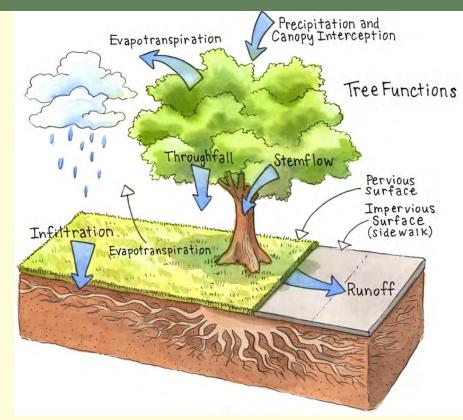
- Compare tree canopy levels over time.
- Understand where tree loss is occurring and be able to take mitigation steps.

Develop an Urban Forest Management Plan for the City of Jacksonville.

- Set clear measurable goals with actionable steps for a municipality's urban forest.
- Link urban forestry goals to those of other departments (including Planning, Parks and Recreation, Public Works etc.)

Develop a Forestry Emergency Response Plan

- Include sections and document protocol on tree risk assessment completion on city-owned property.
- Include sections on risk management and pre-disaster response


Reduce parking space requirements and increase parking lot perviousness.

- Some parking lots have excess spaces and therefore excess impervious surfaces and more stormwater runoff.
- Use Low Impact Development (LID) technology to increase parking lot perviousness, provide more shade, and increase parking lot attractiveness.

Link the city's urban trees to stormwater infrastructure.

- Establish city trees role as infrastructure to receive federal aid for post-storm clean up efforts.
- Credit urban trees in the stormwater utility fee to promote more urban tree plantings.

Encourage tree plantings on private property.

- Establish neighborhood community tree planting campaigns.
- Partner with local business for discount coupons on trees and tree materials.

Encourage shade tree plantings on city property.

- Shade trees provide more shade and habitat than palm or crepe myrtle counterparts.
- Shade trees require significantly less maintenance than palms.

Work with developers to shrink the development footprint.

- Do not permit lot line to lot line clearing. Require retention of healthy clusters of trees.
- Look for opportunities to minimize impervious surfaces.

Discussion

GIC Inc. 320 Valley Street Scottsville, VA, 24590 434-286-3119 www.gicinc.org

Firehock@gicinc.org